A five-parameter temperature-corrected Murnaghan equation for P-V-T surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Five-Parameter Yield Surface

This paper is on the elasto-plastic analysis of plane stress problems. A five-parameter yield surface is presented. This yield criterion uses associate flow along with mixed hardening rule. The analytical formulations are written and related computer program for non-linear analysis is prepared. Finally, based on the formulations, numerical examples are solved.

متن کامل

A Five-Parameter Yield Surface

This paper is on the elasto-plastic analysis of plane stress problems. A five-parameter yield surface is presented. This yield criterion uses associate flow along with mixed hardening rule. The analytical formulations are written and related computer program for non-linear analysis is prepared. Finally, based on the formulations, numerical examples are solved.

متن کامل

A New Five-Parameter Distribution: Properties and Applications

In this paper, a new five-parameter lifetime and reliability distribution named “the exponentiated Uniform-Pareto distribution (EU-PD),” has been suggested that it has a bathtub-shaped and inverse bathtub-shape for modeling lifetime data. This distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and biological sciences. Firstly, the mathematical and st...

متن کامل

a five-parameter yield surface

this paper is on the elasto-plastic analysis of plane stress problems. a five-parameter yield surface is presented. this yield criterion uses associate flow along with mixed hardening rule. the analytical formulations are written and related computer program for non-linear analysis is prepared. finally, based on the formulations, numerical examples are solved.

متن کامل

Steffensen method for solving nonlinear matrix equation $X+A^T X^{(-1)}A=Q$

In this article we study Steffensen method to solve nonlinear matrix equation $X+A^T X^{(-1)}A=Q$, when $A$ is a normal matrix. We establish some conditions that generate a sequence of positive denite matrices which converges to solution of this equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geophysical Research

سال: 1989

ISSN: 0148-0227

DOI: 10.1029/jb094ib07p09477